SUDIGGAA

STUDY AND ANALYSIS OF OPTIMAL DISTRIBUTED GENERATION FOR ACCESS TO GRID ELECTRICITY FOR ALL IN FIVE YEARS WITH PARTICIPATION FROM LOCAL-LEVEL GOVERNMENT

एलइए इन्जिनियरिङ्ग करुपनी लि. NEA ENGINEERING COMPANY LTD. Trade Tower, Thapathali, Kathmandu, Nepal

Outline

Introduction and perspective

Objective of the study

Major components of the study

Major findings of the Study

Recommendations

Objective

<u>on</u>

e

nts

S

nd

nta

Requirement study of all Municipalities

• for future load of 2023, and extrapolation up to 2027

Optimum Grid Expansion

• Identify the optimum grid expansion path with a substation optimally located at the Geodemographic center

Optimal DG Selection

• Find ONE small-scale renewable source of Generation as Distributed Generation in each, that can be sustainable with network connection

Economic and Financial Viability Study

• Economic and Financial analysis to select the optimum generation option, and verify reasons for government investment.

Recommendation

 Recommend a Workable Plan and Next Steps for Sustainable Distributed Generation for Grid Access to All (SUDIGGAA)

Step 1: Grid extension:

- Find population data of each municipality and project load for 2023 then to 2027
- Find existing electricity supply and electrification status data
- Find sites for Substations Geodemographic center of municipality
- Find optimum paths of the grid expansion modified algorithms Kruskal and own improvised initiative

Step 2: For DG hydropower projects:

- Criteria is created to screen and find max. 3 best alternative sites
- In case of Hydro, Skirt the large projects (not to kill potential), skirt DOED licensed projects
- Where Hydro is pre-emptively expensive, solar sites are located.
- Where solar sites are prohibitive due to prospective land costs (50 large/medium Town Municipalities), bio-mass sites are located
- Windpower is compared with other alternatives

Step 3: Financial Analysis and comparison for Selection of DG projects

• Financial analysis is performed to find the best alternative and determine the necessary investment and subsidy amount

on n

<u>e</u>

nts

<u>S</u>

nd

nta

Step 1: Grid extension:

<u>on</u>

e

<u>S</u>

nd

nta

- Find population data of each municipality and project load for 2023 then to 2027
- Find existing electricity supply and electrification status data
- Find sites for Substations Geodemographic center of municipality
- Find optimum paths of the grid expansion modified algorithms Kruskal and own improvised initiative

Domestic Load Forecast: Using CBS data of 2011

Load Demand Considered: 300 kWh-Electrified; 180 kWh-Unelectrified in 202

Exisiting Grid Status: Through NEA & NEA DCSD.

Existing Electrification Status of Municipali

<u>e</u>

<u>S</u>

Step 1: Grid extension:

- Find population data of each municipality and project load for 2023 then to 2027
- Find existing electricity supply and electrification status data
- Find sites for Substations Geodemographic center of municipality
- Find optimum paths of the grid expansion modified algorithms Kruskal and own improvised initiative

Latitude, Longitude of GDC Calculated as,

$$X_{out} = \frac{\sum_{i=1}^{N} P_i X_i}{\sum_{i=1}^{N} P_i}$$
$$Y_{out} = \frac{\sum_{i=1}^{N} P_i Y_i}{\sum_{i=1}^{N} P_i}$$

nta

nd

<u>on</u>

e

nts

Where, N is the number, P is the population weightage, and X and Y are the latitude and longitor of the wards within a County.

X_{out} and Y_{out} is the calculated latitude and longitude of the geo-demographic center

on n Substation Site Finding: Geo Demographic Center

• Example: Aathrai Tribeni, Taplejung

on n Substation Site Finding: Geo Demographic Center

• Example: Aathrai Tribeni, Taplejung

<u>on</u>

Substation Site Finding: Geo Demographic Center

Shifted GDC

Calculated GDC for aathrai

Step 1: Grid extension:

<u>on</u>

e

- Find population data of each municipality and project load for 2023 then to 2027
- Find existing electricity supply and electrification status data
- Find sites for Substations Geodemographic center of municipality
- Find optimum paths of the grid expansion modified algorithms Kruskal and own improvised initiative

Summary of Grid Expansion

on n

Implementation Modality

e	Phase	Duration (yrs.)	No. of 132/33 kV Ss	No. of 33/11 Ss	No. of 11 kV sw.stn	Length of 132 kV line	Length of 33 kV line	Length of 11 kV line	Estimat Cost (N Million
nts	1	2.5	5	<mark>79</mark>	20	100	1540	270	<mark>14156</mark>
	2	1(+1.5 overlap	3	<mark>145</mark>	79	96.2	1895	843	<mark>22320</mark>
<u>s</u>	3	1(+2.5 overlap)	0	<mark>99</mark>	100	0	2133.4	950.9	<mark>17326</mark> ,
	Total	4.5	8	<mark>323</mark>	199	196.2	5568.4	2063.9	<mark>53802</mark>

nta

<u>on</u>

e

nts

<u>s</u> end

<u>nta</u>

Step 2: For DG hydropower projects:

- Criteria is created to screen and find max. 3 best alternative sites
- In case of Hydro, Skirt the large projects (not to kill potential), skirt DOED licensed projects
- Where Hydro is pre-emptively expensive, solar sites are located.
- Where solar sites are prohibitive due to prospective land costs (50 large/medium Town Municipalities), bio-mass sites are located
- Windpower is compared with other alternatives

e

<u>S</u>

Identified DG hydropower projects:

<u>on</u>

<u>e</u>

<u>nts</u>

<u>s</u> nd

<u>nta</u>

<u>on</u>

<u>e</u>

Step 3: Financial Analysis and comparison for Selection of DG projects

- Financial analysis is performed to find the best alternative and determine the necessary investment and subsidy amount
- Analysis has been performed at different SDR
- Multiple Funding Possibilities has also been observed

Total Number of DG Selected

<u>on</u>

e

nts

<u>S</u>

nd

nta

Financial Investment for DG, MNPF

Total Cost of Project, MNPR

Grid Extension with DG vs Without DG

Grid Extension with DG vs Without DG

Grid Extension with DG vs Without DG

Effects of DG not monetized

- Use of Natural Resources at Local Level
- Empowerment of local governments
- Local economic impact
- Energy mix

<u>on</u>

e

nts

nd

nta

- Distributed job creation
- Ripple Economic Effect: forward linkage to economy such as industrial activity
- Support to local technical capability
- Support to local capital formation by shareholders of local community, as well as local municipality

Recommendations

on n

Implementation Modality

e	Phase	Duration (yrs.)	No. of 132/33 kV Ss	No. of 33/11 Ss	No. of 11 kV sw.stn	Length of 132 kV line	Length of 33 kV line	Length of 11 kV line	Estimat Cost (N Million
nts	1	2.5	5	<mark>79</mark>	20	100	1540	270	<mark>14156</mark>
	2	1(+1.5 overlap	3	<mark>145</mark>	79	96.2	1895	843	<mark>22320</mark>
<u>s</u>	3	1(+2.5 overlap)	0	<mark>99</mark>	100	0	2133.4	950.9	<mark>17326</mark> ,
	Total	4.5	8	<mark>323</mark>	199	196.2	5568.4	2063.9	<mark>53802</mark>

nta

Next Steps for Implementation

<u>on</u>

<u>e</u>

nts

nd

nta

Case I: VGF provided with no upper limit such that ROE = 15% for each Project **Case II:** Benchmark VGF provided such that ROE = 15% for each Project with maximum USD 1000/kW (i.e. NPR 100,000/kW) per project

Technology	Case I	Case II
Hydro	USD 229 million	USD 150 million
Solar PV with Battery Storage	USD 519 million	USD 481 million
Biomass	-	
Wind	USD 0.12 million	USD 0.12 million
	USD 748 million	USD 631 million
	(approx. NPR 75	(approx. NPR 63
Country Total	Arba)	Arba)

THANK YOU !

Trend of Solar PV cost

On the other hand, cost of Hydropower is Increasing with increase in cost of Construction Materials

<u>on</u>

e

nts

S

nd

nta

Source: http://newscenter.lbl.gov/2016/08/24/median-installed-price-solar-united-states-fell-